Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment.

نویسندگان

  • A D Baron
  • M Tarshoby
  • G Hook
  • E N Lazaridis
  • J Cronin
  • A Johnson
  • H O Steinberg
چکیده

Insulin and glucose delivery (muscle perfusion) can modulate insulin-mediated glucose uptake. This study was undertaken to determine 1) to what extent insulin sensitivity modulates the effect of perfusion on glucose uptake and 2) whether this effect is achieved via capillary recruitment. We measured glucose disposal rates (GDRs) and leg muscle glucose uptake (LGU) in subjects exhibiting a wide range of insulin sensitivity, after 4 h of steady-state (SS) euglycemic hyperinsulinemia (>6,000 pmol/l) and subsequently after raising the rate of leg blood flow (LBF) 2-fold with a superimposed intrafemoral artery infusion of methacholine chloride (Mch), an endothelium-dependent vasodilator. LBF was determined by thermodilution: LGU = arteriovenous glucose difference (AVGdelta) x LBF. As a result of the 114+/-12% increase in LBF induced by Mch, the AVGdelta decreased 32+/-4%, and overall rates of LGU increased 40+/-5% (P < 0.05). We found a positive relationship between the Mch-modulated increase in LGU and insulin sensitivity (GDR) (r = 0.60, P < 0.02), suggesting that the most insulin-sensitive subjects had the greatest enhancement of LGU in response to augmentation of muscle perfusion. In separate groups of subjects, we also examined the relationship between muscle perfusion rate and glucose extraction (AVGdelta). Perfusion was either pharmacologically enhanced with Mch or reduced by intra-arterial infusion of the nitric oxide inhibitor N(G)-monomethyl-L-arginine during SS euglycemic hyperinsulinemia. Over the range of LBF, changes in AVGdelta were smaller than expected based on the noncapillary recruitment model of Renkin. Together, the data indicate that 1) muscle perfusion becomes more rate limiting to glucose uptake as insulin sensitivity increases and 2) insulin-mediated increments in muscle perfusion are accompanied by capillary recruitment. Thus, insulin-stimulated glucose uptake displays both permeability- and perfusion-limited glucose exchange properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

chapter 2 – vasomotion and capillary recruitment

Insulin-induced capillary recruitment is considered a significant regulator of overall insulin-stimulated glucose uptake. Insulin’s action to recruit capillaries has been hypothesized to involve insulin-induced changes in vasomotion. Data directly linking vasomotion to capillary perfusion, however, are presently lacking. We therefore investigated whether insulin’s actions on capillary recruitme...

متن کامل

Chapter 3 – Microvascular Recruitment in Skin and Muscle

Insulin-induced capillary recruitment is considered a determinant of insulin-mediated glucose uptake. Insulin action on the microvasculature has been assessed in skin, however, there is concern as to whether the vascular responses observed in skin reflect those in muscle. We hypothesized that insulin-induced capillary recruitment in skin would correlate with microvascular recruitment in muscle ...

متن کامل

Insulin-Induced Changes in Skeletal Muscle Microvascular Perfusion are Regulated by Perivascular Adipose Tissue in Women

Rationale Obesity increases the risk of cardiovascular disease and type 2 diabetes, at least partly through its association with microvascular dysfunction and insulin resistance. In the skeletal muscle microcirculation of obese subjects, insulin’s vasodilator effects are impaired, reducing insulin-induced glucose delivery and uptake. Here, we studied whether perivascular adipose tissue (PVAT) c...

متن کامل

Blood flow and muscle metabolism: a focus on insulin action.

The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell c...

متن کامل

Microvascular Contributions to Insulin Resistance

The notion that type 2 diabetes and insulin resistance are associated with many macroand microvascular defects (1,2) is unquestionable, but whether vascular defects precede and contribute to insulin resistance is less certain and has been a controversial topic. The most compelling evidence for a vascular involvement in insulin resistance has been in skeletal muscle (3), but recent research has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 49 5  شماره 

صفحات  -

تاریخ انتشار 2000